

<mark>- New York</mark> Constants of the **Constant of the Constant of the**

October 2004

_

m

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

Hister Bansal

Nisha Bansal Project Manager

Varje d. E _____

Loveriza Sarmiento, Ph.D. Senior Toxicologist

			•

TETRA TECH, INC.

••••₁

.

3.2.1 Soil COPCs 3-2 3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.1 FXPOSURE ASSESMENT 4-1 4.1 Functional exposure raniways 4-1 4.1.1 Foreinal exposure raniways 4-1 4.1.2 Current and Future Receptors 4-4 4.2.2 Current and Future Receptors 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.2 Exposure Parameters 4-5 4.2.5 Dermal Algorithm 4-7		TABLE OF CONTENTS		
14. Ornanization of the HRA 1-3 14. Ornanization of the HRA 1-3 1 3.2.1 Soil COPCs	Section	ı	Page	
2.41 MAAX's lower linations 2-2 3.2.1 Soil COPCs 3-2 3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.4 Surface Water COPCs 3-4 4.0 FXPOSUBEE ASSESSMENT 4-1 4.1.1 Fournett and Future Receptors 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.5 Dermal Aldorithm 4-7		EXECUTIVE SUMMARY	ES-1	
2.41 MAAX's lower linations 2-2 3.2.1 Soil COPCs 3-2 3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.4 Surface Water COPCs 3-4 4.0 FXPOSUBEE ASSESSMENT 4-1 4.1.1 Fournett and Future Receptors 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.5 Dermal Aldorithm 4-7	· (, ·		
2.41 MAAX's lower linations 2-2 3.2.1 Soil COPCs 3-2 3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.4 Surface Water COPCs 3-4 4.0 FXPOSUBEE ASSESSMENT 4-1 4.1.1 Fournett and Future Receptors 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.5 Dermal Aldorithm 4-7				
2.4.1 MAA's investinations 2-2 3.2.1 Soil COPCs 3-2 3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.5 Surface Water COPCs 3-4 4.0 FXPOSUBE ASSESSMENT 4-1 4.1.1 FUBLICAL Exposure Faulways 4-1 4.1.2 Current and Future Receptors 4-4 4.2.1 Estimation of Exposure 4-4 4.2.2 Exposure Parameters 4-5 4.2.5 Dermal Algorithm 4-7		14 . Organization of the HRA	1-3	
3.2.2 Groundwater COPCs 3-3 3.2.3 Sediment COPCs 3-4 3.2.4 Surface Water COPCs 3-4 3.2.4 Surface Water COPCs 3-4 4.0 FXPOSUBE ASSESSMENT 4-1 4.1.1 Forential exposure nativays 4-1 4.1.2 Current and Future Receptors 4-4 4.2 Quantification of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.2 Exposure Parameters 4-5 4.2.5 Dermal Algorithm 4-7	Live ,	2.4.1 MAA's Investigations	?-2	
4.1.1 FXPOSURE ASSESSMENT 4-1 4.1.1 Folential Exposure Paulways 4-1 4.1.2 Current and Future Receptors 4-4 4.2 Quantification of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.2 Exposure Parameters 4-5 4.2.5 Dermal Aldorithm 4-7	L 	3.2.2 Groundwater COPCs 3.2.3 Sediment COPCs 3.2.4 Surface Water COPCs	3-3 3-4 3-4	
4.1.2 Current and Future Receptors 4-4 4.2 Quantification of Exposure 4-4 4.2.1 Estimation of Concentration at the Point of Exposure 4-4 4.2.2 Exposure Parameters 4-5 4.2.5 Dermal Algorithm 4-7	<u>4.9</u>	_FXPOSURE ASSESSMENT	4-1	
		 4.1.2 Current and Future Receptors 4.2 Quantification of Exposure 4.2.1 Estimation of Concentration at the Point of Exposure 	4-4 4-4 4-4	-
	,	4.2.5 Dermal Algorithm	<u>,</u> 4-7	}
				á.
Sadimond 6.3	1-	<u>Contiment</u>	<u> </u>	
	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	CU MARTINISTATE ARRADT LINAAN HEALTHERICK APPERPRIAT		

	TABLE OF CONTENTS (Continued)			
	Section Z-Ays{GFFFTANTTA	Page 7 1		
	A DEVELOPMENT OF CLEANUP GOALS	_9-1	J	
he				
			·	
12				
	Table 1 Identification of Surface Soil Chemicals of Potential Concern (COPC	Cs)	I	
<u></u>			,	
	·			
-				
			· · · · · · · · · · · · · · · · · · ·	
▲			<u> </u>	
· · ·				

EXECUTIVE SUMMARY

	A human health risk assessment (HRA) was cond concentrations detected in the soil, sediments, and gro	undwater at the southeast portion	
	<u> </u>		
	Groundwater heneath the Site is not and will not he		
finni t	esounduraton Although the data stad and autostican to		
	(A		
ł <u></u>			
(* 27-			
•			
· · · · · · · · · · · · · · · · · · ·		<u>kaindar kang</u> (* *
<u></u>	•		
	There is a first the second for a second for the se		/:
	TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT	PAGE ES-1	

Exposure Scenario	Estimated Carcinogenic Risks	Estimated Hazard Index	
	T T		
Soli Sediment	4.E-00 1E-06	0	1
Recreational User	12-00		
Sediment	1E-06	0.007	
Sediment			8
Surface Water	8.E-08	0.002	
	8.E-08	0.002	
	8.E-08	0.002	

cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride, and dissolved cadmium. Riskbased levels (RBLs) were developed for these constituents under the assumption that these constituents will ultimately reach the surface water in Frog Mortar Creek. The

Frog Mortar Creek, and were based on a target risk of 1 E-06 and a target hazard index of 0.1 for each chemical of concern.

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

The calculated RBLs for surface water in the creek are presented in the table below.

Analyte	Risk-based Levels in Surface Water
TCE	0.01 mg/L
cis-1,2-DCE	1.1 mg/L
Vinvl oblorida	0.004_mo/l

The corresponding target cleanup goals for groundwater are the chemical concentrations that will not exceed the surface water RBLs when, and if, the chemical plumes in groundwater will ultimately reach Frog Mortar Creek. To calculate the target

Section 1 INTRODUCTION

	On behalf of Lockheed Martin Corporation, Tetra Tech has prepared this human health	
	risk assessment (HRA) that was conducted for the southeast portion of Martin State	
<u>.</u>		
	numun nourar raak aasta aastaan kuntu kuntu kutu arpon, maa ausaataa aa ka margaataa	
		P
••••••••••••••••••••••••••••••••••••••	Non Addudining martin date supply addu day 2004. However, dudie on route	
• •		
1	(A. E.) Bedra, Ower,	
- *		
	The risk assessment was conducted in accordance with the following guidance	
	documents:	
	Risk Assessment Guidance for Superfund (RAGS); Part A, Vol. 1: Human Health Evaluation Manual, USEPA, 1989;	
·		
- 67- -		
	Updated Dermai Exposure Assessment Guidance, Region 3 Technical Guidance Manual, 2003,	
	Guidance for Data Usability in Risk Assessment, USEPA, 1992;	
······································		
, b 		

	Superfund Exposure Assessment Manual (USEPA 1988) and
4	93-001, January 2005.
)	State of Mandand Department of the Environment Cleanup Standards for Soil
, <u>,,</u> 	á

.

accomplished by identifying the complete and significant pathways by which humans could potentially contact the COPCs in the areas of concern. Dose assessment predicts the amount of chemical intake (i.e., dose) of a potential receptor at a particular exposure point or location. Dose-receptor functions are used to correlate exposure doses to booth efforts. This information can then be used to calculate and characterize the risk.

1.4 Organization of the HRA

 $\sim r$

LIETE ATTE CONST CONTRACTOR CONST

Section 2 presents the background information on the Site. The physical and environmental setting, as well as a summary of the previous investigations, are discussed in this section. Section 3 describes the identification of chemicals of notential

human receptors that could be potentially exposed, and how the human receptors could

po overcod . Anniicable chemical creatific properties were incornerated in actimating the

- حام حجم

97.1---

2.....

Section 2 SITE BACKGROUND

2.1 Site Location and Description

1 (P)		
<u> </u>		-
τ.		
•		
	-	
	The nonermost 10 to 20 feet of soil consists of fill materials that were placed during	
1 /		
- ,		
٢		
2	DIAL WILL CARE THAT DOUDOD CODOCATO COLO DE COLO DIALE COLO DIALE	
r		
	-	
		<u>بالج</u>
<u>نه</u>		
L		
-)		
ē		
	poorly graded tine_sands) were dominant from approximately 15 to 45 teel below theat	
. .	¥ •	
• •		

1 m

. .

8.8. S-

2.3 Site Hydrogeology

Groundwater elevations in the wells have ranged from 1.10 to 7.55 feet above msl from 2002 through 2004. The groundwater flow direction is to the east toward Frog Mortar <u>Create (Totra Toch 2002)</u>. Due to the Site's provimity to Free Mortar Creek a 12-bour

TETER TECH MARTIN, STATE ADDODT HUMAN HEATTH DICK ACCESSMENT

19 <u></u>	n en en el su de contra de
•	Administration (MAA) and by Lockheed Martin Corporation.
	2.4.1 MAA's Investigations
<u>}</u>	The Atta identified the laurantication and in 1999 1001 when four dryme work
	(Correspondence from MDE: 1/6/92 and 1/14/97)
	are four areas of concern (AOCs), namely:
	Taxiway Tango Median Anomaly Area – several anomalous zones
•	Degenerations also to discussion and in 4000 measured
الے .	Two Existing Ponds – historical records suggest that acids may have been discharged during the 1950s and 1960s at the locations where two ponds
	 Petroleum Hydrocarbon Area – a petroleum hydrocarbon area was

encountered at the Site in 1996. The petroleum hydrocarbon area is located approximately 200 feet west of the ponds.

F

h...

24 ? Lockheed Martin Corporation's Investigations

	In March 1999, Lockheed Martin collected groundwater monitoring well data to obtain
	() and the second s
A STATE OF A	
r	

trichloroethane (TCA), trichloroethene (TCE), and vinyl chloride] and two dissolved metals (beryllium and cadmium) were present above the Maximum Contaminant Levels (MCLs) for drinking water.

Source Identification and Assessment Program - 2000

Additional investigations (Source Identification and Assessment Program, Tetra Tech, 2000) were conducted from March through June 2000 to identify the potential source/sources of the chemicals in groundwater. Each of the four AOCs listed in Section 2.4.1 was investigated through a combination of excavations, localized trenching, soil borings, and sampling and analyses of soil, sediments, and groundwater samples (Tetra Tech, 9/2000). VOCs, petroleum hydrocarbons, and metals were detected in the coll and aroundwater during this investigation. VACs and metals were

~	datacted in the soil and VOCs were detected in the aroundwater shows MCLs	
1.12-		
•	ь <u>х</u>	
·		
·		
		
_		
<u> </u>	that the notential source areas are the Taxiway Tanno median area, the drum area, and	
۲ ۴٫۴		
<u>.</u>	the particular of the constant of the state	
<		4
K		
<u>></u>		
1		

Data Gap and Hydropeologic Investigation - 2003

moundwater in antigation and further evoluction of the vertical extent of aroundwater

plumes, (3) to characterize the geology of the surficial aquifer, and (4) to conduct

10

chemical concentrations in groundwater indicate that three potential source areas (drum area, petroleum hydrocarbon and Pond #1 area, and Taxiway Tango median area) are present at the site contributing to three primary groundwater plumes. Based on the concentration and frequency of detection, three chlorinated VOCs (cis-1,2-DCE, TCE, and vinyl chloride) and one metal (dissolved cadmium) are considered the primary chemicals of concern.

Groundwater Modeling -- 2003 -2004

Fate and transport modeling was conducted to evaluate dynamic changes of the

(Reartive Transport in 3-Dimensions) model code was used to model sequential decay

2.4.3 Sediment and Surface Water Investigations

In Mar 2000, codimont complex wars collected from Dands #1 and #2 and analyzed for

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

· • • •	· · •	· · · · · · · · · · ·	· · ·	 	
and and an a second second second					

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

PAGE 2-5

Section 3 IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN

3.1 Data Evaluation

s. -

As discussed in Section 1. the HRA was based on data from (a) soil and sediment investigations conducted from 2000 through 2002, (b) groundwater sampling conducted within the past two years, and (c) sediment and surface water sampling conducted in

The data from the previous investigations were reviewed to ensure that the quantity and quality of the analytical data were suitable for risk assessment purposes. The quality of the data was evaluated based on the quality control samples that were collected and analyzed. Field quality control samples included field duplicates and trip blanks. Laboratory control samples included surrogate spikes. The quantity of quality control samples included surrogate spikes.

Assessment Martin State Airport (Tetra Tech 2004) it was stated that the HRA will

of each AOC, thus, an AOC-specific risk evaluation does not have a defensible rationale.

Information on the historical operations at the Site indicated that the potential sources of

TETRA JECH MADTIN STATE AIDDODT MUMAN MEATTU DICK ACCECCMENT

المحمد من من المحمد الم

-

1,1-

site isuantiantions focused on collecting coll complex from a depth of one fact has to a

houd hudd to und the string our cost and an

This section describes the methodology of the screening evaluation that was intended to generate a reduced set of chemicals that will be evaluated quantitatively in the risk assessment. The methodology was consistent with the recommended methodology in the *Risk Assessment: Technical Guidance Manual* (USEPA Region 3, 2003).

<u>ຳ ງ / ______ ຄ_ມີໄດ້ດັກຕ</u>

Ìŧ

subsurface soil, respectively. Each rable also shows the number of samples collected, the number of samples with detectable concentrations, the practical quantitation limit $(PO^{1,3})$ the frequency of detection, the range of detected concentrations, the maximum

RVEPA REGION 3. THE IDUALSIED WAS TO COMORIE THE DIACRESH OPAURAHOU ROUGH HERVER

samples, and its MQL was at or lower than the EPA Region in industrial RBC, then the

The next step in the screening evaluation was to compare the maximum concentration to the USEPA Region III industrial RBC. The identification of COPCs was based on the following:

A chemical with a maximum detected concentration in soil that was higher than
 the industrial RRC was identified as a COPC

٠	A chemical that was	reported as a non	 detect in all of th 	e soil samples but had a
---	---------------------	-------------------	---	--------------------------

emodian limit that use his har then the industrial DDA was also identified as a

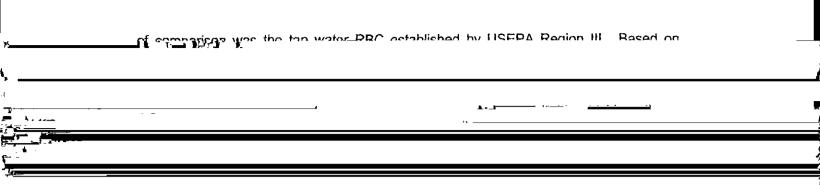
A chamical with a maximum concentration that was lower than the industrial RRC
the state of the s

COPC.

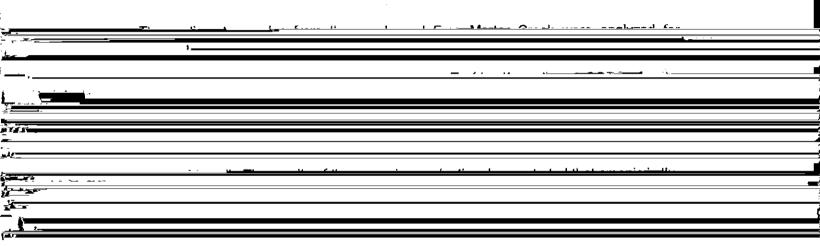
The soil COPCs are listed in the Table below.

Surface Soil COPCs -	Subsurface Soft-SOPCs
Arsenic	Antimony
Lne	Areania

	····	1
рензо(а)ругене	Leau	
Benzo(b)fluoranthene	Mercury	


1	T M 19 [bouro(d)cininidoorio,
	benzo(a)pyrene, benzo(b)fluoranthene,
	dibenz(a,h)anthracene, and indeno(1,2,3-
	cd)pyrene].

PAHs - polycyclic aromatic hydrocarbons


It should be noted that lead, mercury, and carbazole were identified as COPCs because there are no published RBCs.

3.2.2 Groundwater COPCs

The second second

3.2.3 Sediment COPCs

3.2.4 Surface Water COPCs

The surface water samples from the ponds and Frog Mortar Creek were analyzed for inorganic constituents, VOC, semi-VOCs, and PAHs. Table 4 in Appendix B also lists the detected constituents in the surface water samples. The highest surface water

If any one of the four elements is missing, the exposure pathway is considered incomplete.

Current extential exposure nathwave are those that exist as a result of the current extent

likely means of future pathway completion is chemical migration from one medium to another or changes in land use.

The proposed future land use of the Site will be similar to the current land use, as

industrial development. Therefore, potential exposures do not include potential exposures through inhalation of indoor air emissions from volatile COPCs that could

Another Site-specific condition in this HRA is the absence of groundwater use at the Site. The groundwater beneath the Site is not, and will not be, a source of potable or industrial water supply. This Site-specific condition eliminates one of the components of a complete exposure pathway, i.e., a point of contact between a potential human receptor and the transport medium, namely, groundwater. Therefore, the exposure

,

r e1

1 _ L

I.

. .

a. .

considered incomplete.

1 -

1.1.1

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

To summarize, the current and future exposure pathways for on-Site workers include the

Dermal contact with surface soil and sediments,

Inhalation of air-borne particulates

intermittent construction/excavation activities to a maximum depth of five feet bgs, the current and future construction worker was assumed to come into contact with the surface and subsurface soil. Since the shallowest groundwater table is deeper than five foot bgs, the current and future construction worker is not anticipated to have potential exposures to groundwater. Therefore, the current and future construction worker is not anticipated to have potential exposures to groundwater.

- Inhalation of air-borne particulates, and
- Dermal contact with surface and subsurface soil, and sediments.

Human recentors have restricted access to the existing ponds where benzo (a) byrene was detected in one out of six sediment samples. Despite the restricted access, however, the HRA proceeded to evaluate potential exposures of the on-site worker to benzo (a) pyrene

Potential exposures of the current and future recreational user to arsenic, the only sediment COPC in Frog Mortar Creek, were evaluated in the HRA. However, since there were no surface water COPCs in the pond areas, exposure pathways to surface water in the ponds

TETBA TECHL MARTIN STATE AIRPORT. HUMAN HEALTH RISK ASSESSMENT

4.1.2 Current and Future Receptors

The current and future land use are anticipated to be similar, thus, the current and future

This section describes the quantification of the chemical intake or exposure doses. These

provide an estimate of the maximum exposure that might occur (EPA, 1989). Under the RME scenario, the intent is to conservatively quantify an exposure that is still within the range of possible exposures.

4.2.1 Estimation of Concentration at the Point of Exposure

The 95 percent upper confidence limit (95% UCL) of the mean concentration of each COPC was used to estimate the concentration at the point of exposure (i.e., exposure point concentration or EBC). The OE% HCL estimate respective confidence that the true site

Environmental Sciences, was used to calculate the 93% OCL. Since the calculation of the

Student's t UCL was used as the exposure point concentration (EPC). If the 95% UCL was

TETER TECH- MARTIN STATE AIRPORT HI MAN HEALTH RISK ASSESSMENT

	a and the second second through inholation of
* /** &	
`	The highest chemical concentrations that were detected in sediments and surface water

Exposure Parameters 4.2.2

d,

The exposure parameters for this HRA are presented in the following Table. Default exposure frequency of an industrial worker (EPA, 1989; EPA ,1997) are not applicable at this Site because the on-site worker would not be present within the boundaries of the Site م ملغ ا

The exposure duration of one year for a construction worker was based on a more conservative estimate of the extent of most redevelopment activities. Activities associated

Since the likely recreational activities at Frog Mortar Creek would be fishing, boating, or wading, it was assumed that the recreational user could be along the shoreline and would some into another with the codiments. Deprestional usage was based on spending time at the Creek for a total of two days a week for eight months or 35 weeks a year. This is based on the assumption that weather conditions would not make it feasible to engage in outdoor activities at the Creek for four months a year.

Summary of Exposure Parameters Martin State Airport

Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20		Exposur	re Assumptions	On-Site Worker	Construction Worker	Recreational User	
Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20	F		the second s			<u> </u>
Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						·
Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Exposure Duration (years)25125Inhalation Rate (m³/day)202020	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Exposure Duration (years)25125Inhalation Rate (m³/day)202020	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Exposure Duration (years)25125Inhalation Rate (m³/day)202020	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Exposure Duration (years)25125Inhalation Rate (m³/day)202020	Exposure Duration (years) 25 1 25 Inhalation Rate (m³/day) 20 20 20						
Inhalation Rate (m ³ /day) 20 20 20	Inhalation Rate (m ³ /day) 20 20 20	<u> </u>					
		Fxposure	Duration (vears)		+	25	-1
	<u></u>	Exposure	Duration (years)	25	1		-
		Exposure Inhalation	Duration (years) Rate (m³/day)	25	1 20		-

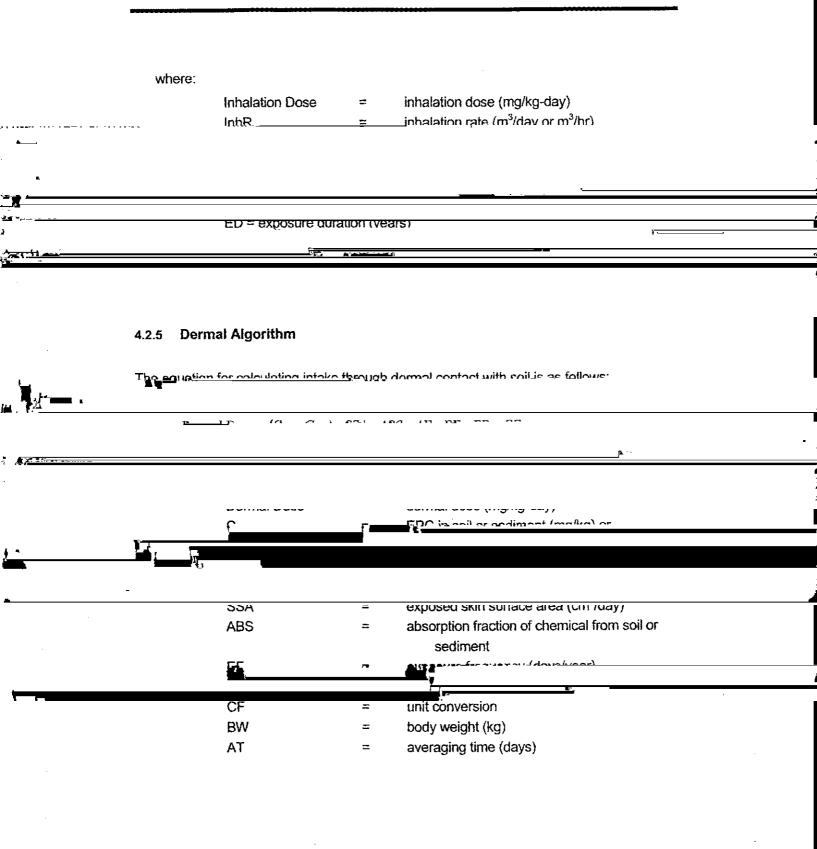
 $a \sim \text{Dased on 2 days a week, ou weeks a year <math>= n - \text{Dased on 2 days a week, so weeks a year <math>$

Ingestion Algorithm 4.2.3

7

The equation for calculating the soil intake through ingestion is as follows:

$$IngestionDose = (Cs \text{ or } Csw) \times IR \times EF \times ED \times CF$$
$$BW \times AT$$


where:

Ingestion Dose Cs Csw IR EF ED BW AT		ingestion dose (mg/kg-day) EPC in soil or sediment (mg/kg) or EPC in surface water ingestion rate (mg/day) exposure frequency (days/year) exposure duration (years) body weight (kg) averaging time (days)
	#	2 2 (2 /
CF	=	unit conversion factor

4.2.4 Inhalation Algorithm

Inchalation Dasa - EDCar Labb + ET + EE + ED

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

Section 5

NOTA COTOSATIN

Toxicity assessment is based on the ability of a compound, at an administered dose, to elicit an adverse human health response. For risk assessment purposes, toxic chemical effects were separated into two categories of toxicity: carcinogenic effects and non-

at any level, result in an increased probability of developing cancer. For a chemical avbibiting non-carcinogenic effects it is balieved that humans have protective mechanisms.

range of exposures up to some defined threshold can be tolerated by humans without

For carcinogens, it is assumed that any level of exposure has a finite possibility of causing cancer, therefore, there is no threshold dose for carcinogenic effects. That is, a single exposure to a carcinogenic chemical may, at any level, result in an increased probability of developing cancer. The USEPA evaluates chemicals that have carcinogenic effects in a two-step process. In the first part of the evaluation, both human and experimental animal studies are reviewed to determine the weight of evidence that a chemical is carcinogenic.

In the second part of the evaluation, a slope factor (SF) is calculated, which is an estimate

TETRA TECH: MARTIN STATE AIRPORT, HUMAN HEALTH RISK ASSESSMENT

national alarge fractions anti-median ancoing anti-metanew and id to low or built are not likely to be

5.2 Noncarcinogenic Toxicity

The threshold dose for noncarcinogenic effects can be related to a reference dose (RfD). A chronic RfD is an estimate of a daily exposure level to which people, including sensitive individuals, do not have an appreciable risk of suffering significant adverse

<u> </u>	· · · ·	
f a		
	protective mechanisms that must be overcome before the adverse effect results; therefore,	
	there is a threshold dose for these effects. This threshold concent view of non-carcinogenic	
УР V		
		1
_		
	The noncarcinogenic or threshold health effects of a chemical are evaluated using a	
		1
1.	<u>alannakutat kuntha aktinaku in kunga</u> ma inatisatian ananat <u>kisa asikaanasi</u> ladinaa kumanaa ak aktilat.	1
		1
		(
		1
		1
P	10762 The alor a fighter and reference described in a timesting the sister and havened	
	Adverse health effects associated with exposure to lead have been correlated with	
	concentrations of lead in whole blood and not with intake of lead by an individual.	
		1
	میں میں اور ایک	
1		
	β <u>****</u> ΑΑΑΑΑ	
<u> </u>		
	· · · · · · · · · · · · · · · · · · ·	
·		
T		

Section 6

RISK CHARACTERIZATION

	The second describes have also determined and a second data and the second data and th
я, т.	
- 145	involves the integration of health energy information, developed as part of the door
	reasonable operations with every antimater developed as part of the every
	······································
Ni 1 - 17	
h:	
<u>.</u>	
÷.	
	DEDATEMENT OF ENVIRONMENT. ARGUES 200 H AND STATES THAT A CONTAMINATE IS CONSIDERED
. –	
	0.1 Garcinogenic Kisk Estimates
·	
	The theoretical excess lifetime cancer risk is an estimate of the increased risk of an
	individual developing cancer as a result of exposure to the COPCs at specified daily
	individual developing cancer as a result of exposure to the COPCs at specified daily dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
· - p	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation:
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation: <u>Excert Cancer Bick - Exposure Dose x Slope Factor</u>
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation: <u>Excert Cancer Bick - Exposure Dose x Slope Factor</u>
	dosages averaged over a lifetime of 70 years. The excess lifetime cancer risk will be estimated for each known, probable, or possible carcinogenic constituent, by using the following equation: <u>Excert Cancer Bick - Exposure Dose x Slope Factor</u>

	the former is a second of the stand of the stand of the stand of the second of the sec	
	8	
	6.2 Noncarcinogenic Effects	
۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	The harmanian (110) is the ratio of the catingstad avanause does to the DfD. This	
ζ <u>.</u>		
ς		
	The sum of the mast is termed the nazard index (m).	
	Since some individuals are exposed by more than one pathway, HQs are summed for	
r		
	population. If the total filazard fildex is equal to of less that i.u, it is believed that no	
	thraphald havith affaata will aparts. An Will of alightly greater than 1 however is not	
<u>.</u>	enects are additive. Since this assumption is known not to be accurate, when a total	
	population hazard index exceeds 1.0, it is appropriate to re-examine the health effects,	
	and to segregate the individual hazard quotients on the basis of target organ or	
	mechanism of action.	
F	1'ട് യെല്ല 1 (ല്ടില്ലില്ലില്ല്ലോല് വരമേദ്യം നെ കെല്ലാന്നനം നല്ലാം പെല്ലാം മ ോക്കായ ക	
, F		
- 1		
	, , , , <u>,</u>	
	worker, the cumulative cancer risk estimate due to potential soil exposures is 3×10^{5}	

The Fin Anonadia D). The extension contails down to the extinction to the entire test of the excited of the extension

¥,

المستحد والمتحد فيتعالم وتعليه سممته المراجع فالمحاجم فيتعارض

and skin contact with benzo(a)pyrene in soils within one foot of soil. The chemical-specific risk attributed to benzo(a)pyrene is 2×10^{-5} .

The HRA also evaluated the unlikely scenario that an on-site worker's exposure to the

to the benzo (a) pyrene in the pond sediments would lead to an estimated risk of 3×10^{-6} (Table 6 in Appendix B). There are no available toxicity factors for noncarcinogenic effects of benzo(a)pyrene, hence, there is no estimated hazard index.

6.3.2 Risks Associated with Exposures of a Future Construction Worker

The construction worker is assumed to be a 70-kilogram male working at the site for 8 hours per day, 5 days per week for a total of one year. Combined ingestion of soil particles at a rate of 480 milligrams a day (EPA, 1997a), inhalation of dust, and adherence of soil particles to the skin provide the basis for exposure dose calculations. Under these conditions, the estimated cancer risk is 4×10^{-6} (Table 7 in Appendix B), and the hazard index is 5. The major contributor to the hazard index is antimony (HI=2).

If a construction worker is accumed to some into contest with the honze (a) surpra in the

nence, there is no estimated hazard index.

1 for the mother

633 Risks Associated with Exposures of a Recreational User to Sediment_

<u>_____</u>____

£ ± -------

cancer risk estimate due to levels of detected carcinogens is in the acceptable range.

adverse health effects associated with the construction worker scenario.

particular second

The results of the health risk assessment also indicated that there are no potential health concerns associated with coming into contact with the sediments and surface water at Frog Mortar Creek.

Section 7 UNCERTAINTY

7.1 Uncertainties in the Risk Assessment

human receptors. Because risk estimates are based on a combination of measurements and assumptions, it is important to provide information on sources of uncertainty in risk

7.1.1 Uncertainties in the Exposure Assessment

A prevailing uncertainty in the exposure assessment lies in the estimation of chemical intake or dose. The concentration at the point of exposure is a significant factor in the uncertainty of the risk estimates. It is evident from the data that the distribution of the chemical concentrations throughout the Site does not follow a normal distribution. In most cases, the exposure point concentration is biased high due to high concentrations present

and hazard indices are likely.

ŧ i

A similar uncertainty exists in the evaluation of the construction worker scenario. Although the evaluation assumed a construction period of one year, actual construction or excavation activities may be considerably shorter. As a result, the risk and health hazard estimates associated with these assumptions could be overestimated.

Another uncertainty in the risk assessment is the use of generic exposure factors, in some cases, in lieu of chemical-specific factors. The ability to have chemical-specific factors for

effects are additive. It is recognized in the scientific community that chemical mixtures could have antagonistic or synergistic effects. Until more scientific evidence is made available, risk assessments err on the conservative side by assuming additive effects. This would lead to an overestimation of risk. On the other hand, if there are synergistic rather

4

. . .

Section 8 CONCLUSIONS

The results of the risk characterization demonstrate that potential exposures to the soil and sediments at the Site resulted in theoretical risk and hazard index estimates that are <u>sither within ap accentable range or that are below the diminimis level of risk. The</u> evaluation of potential exposures to the surface water and sediments in Frog Mortar Creek while engaged in recreational activities also demonstrated that there are no <u>impresentable levels of risk and health bazard</u>. Since the conservative evaluation of

exposures, it is unlikely that the much shorter exposures of a trespasser, if any, would pose a health problem.

In conclusion, this health risk assessment demonstrates that the current use and the

in the second second second for the site of metal and reaction and health

TE	401	TEOIL	 CT ATE	AIDDODT	UP BARANE LICATION	DICV	ACCCCCAFAIT
H							
Υ.							
0.2							

Section 9 DEVELOPMENT OF CLEANUP GOALS

though an anti- the surface water and sediments in From Mortar Creek resulted in

2004) predicted that the chemical plumes on-Site could ultimately reach the Creek. Risk-based cleanup goals will be developed for specific constituents in groundwater that could be transported to the Creek. These constituents included TCE, cis-1,2-DCE, vinyl ساباسادهم المعابلة ججاليهمو الماجار مليان

The development of risk-based levels (RBLs) in surface water that would be healthanotactive of the correctional users at Fron Morter Craekis hased on a target risk of 1 F-

are presented in the table holew and the enreadeheat calculations are presented in

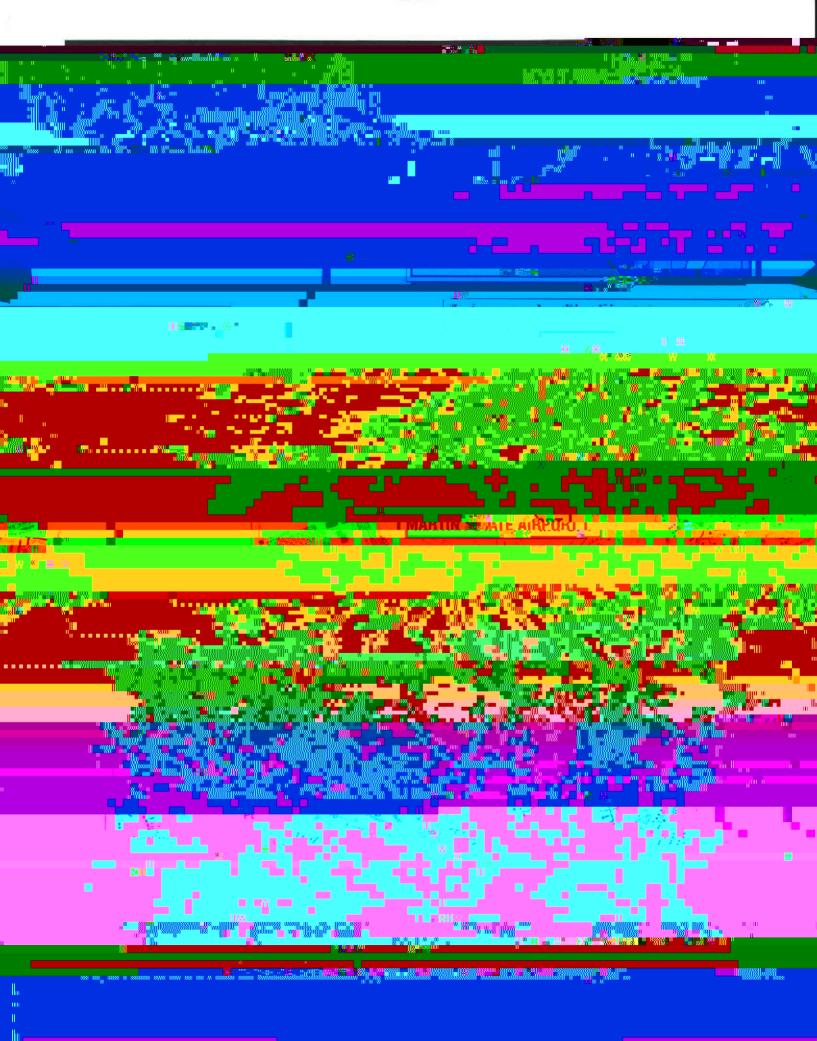
<u>L</u>				
·				
		ų		0
			Surface Water	
h				
•		Vinyl chloride	0.004 mg/L	
		Carlos	0.1//	
) 		· · ·	. , , , , , , , , , , , , , , , , , , ,	να του σα τ ,
	2.			
\$/2m	L	1 4 <u> </u>	allan den 13 e Sant de la -	c t t
τ				
· · · · · · · · · · · · · · · · · · ·	ŧ	,		
3				
	TUTUY TOUL IN STATE	111		DAME & 4
		, 9, 3 1 1 1 1		

Section10 REFERENCES

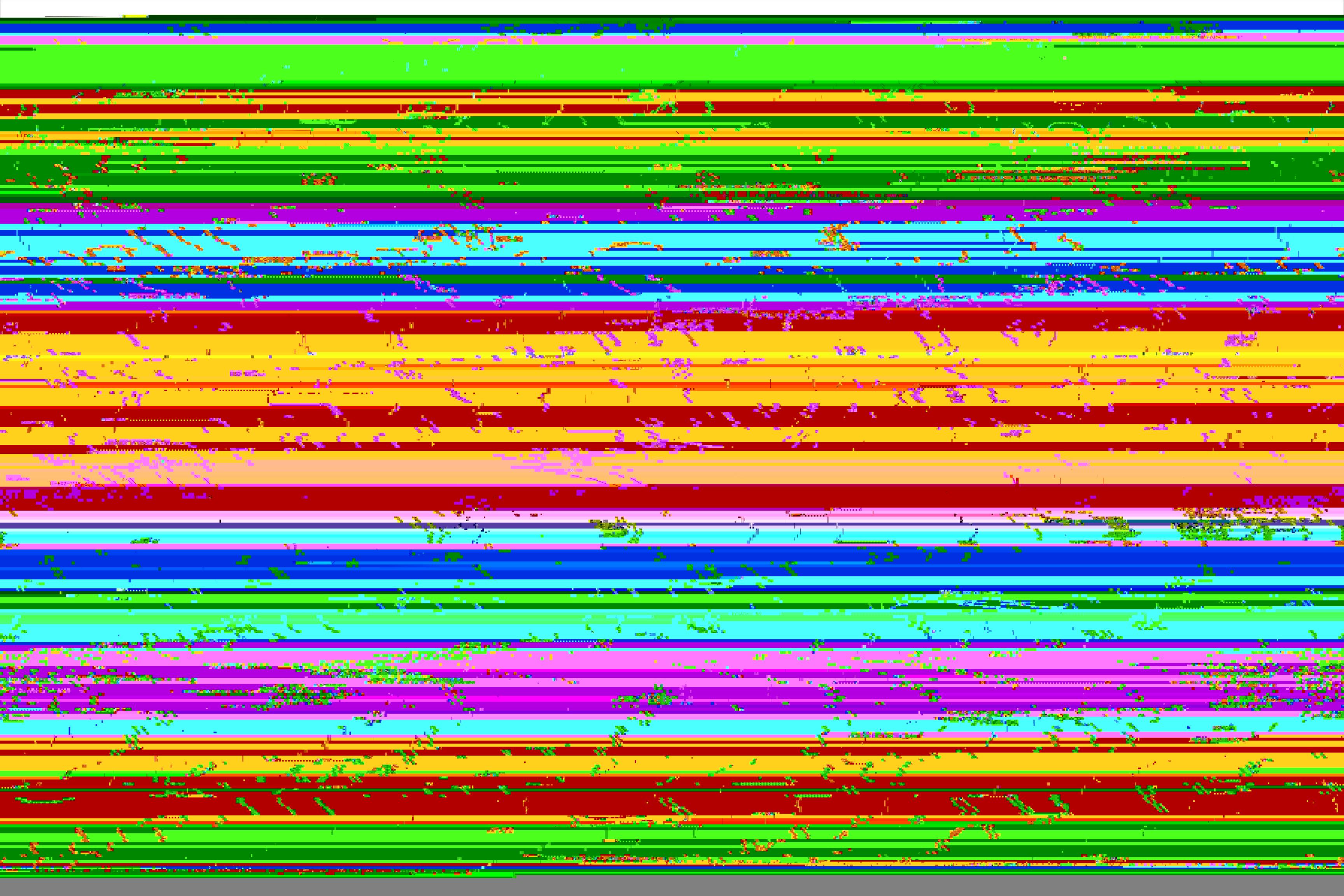
	Department of the Environment, State of Maryland, 2001. Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 1), August.
	Taxiway Tango. May 1994.
	Tetra Tech, 1999. Final Groundwater Monitoring Well Surveying and Sampling Report, Martin
6	
	ſ <u>=</u>
	Totro Took 2004 Einol Dote Can and Hydrocoplasis Invastigation Work Dian Martin State
·	Airport, Middle River Maryland. July 2004.
<u> </u>	U.S. Environmental Protection Agency (US EPA), 1989. Risk Assessment Guidance for
m	Emergency and Remedial Response, washington, DC.
	U.S. Environmental Protection Agency (U.S.EPA), 1991a. Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factor. March 25.
	U.S. Environmental Protection Agency (U.S.EPA), 1991b. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decision. OSWER Directive 9355.0-30.
×	VA E_/
lu l	
	U.S. Environmental Protection Agency (U.S.EPA), 1992b. Guidance for Data Useability in Risk Assessment: 9285.7 09A. April.

L	U.D. F. S. Martin Manager H.C. EDAX 40000 - Eventemental Ovidanas to BACE.	
	Calculating the Concentration Term, PB92-963373. May.	
-7	U.S. Environmental Protection Agency (U.S.EPA), 1996b. Soil Screening Guidance: User's Guide,	
1	/ Contraction Accord (U.D. EDA) 4087- Function Fordward Llandhaak National	
۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		
- ,		
r	wasmigilian, and ao.	

U.S. Environmental Protection Agency, Region 3, 2003. Region 3 Technical Guidance Manual, June.


-

			· · · · ·	
	· · · · ·			
		l		
-				



. .

X MANY

APPENDIX B TABLES

.

Table 1. Identification of Surface Soil Chemicals of Potential Concern Martin State Airport Middle River, Maryland

i	
د ۲	
k '' //•	
í	
۰	
· .	
<u>, 1</u>	
ŝ	RRRRRRRR
-	
<u>, I</u>	
· · · · · · · · · · · · · · · · · · ·	
·····	
<u>"5 *</u>	
• # •	

Table 1. Identification of Surface Soil Chemicals of Potential Concern Martin State Alrport Middle River, Maryland

. 5	·····		
<u>ی شرقی</u>			
<u> </u>			
-			
н			
-			
. –			
her v			
		1,1,2-Trichloroethaue 15 0.005 0 0%	50 No
-			
4	A		
	# .#		
f.			
} _			
.77			
	-		
	-		
		Xylenes 15 0.015 0 0%	200000 No
團,			
F	• •		
A I	1		ј I II Ъз. з за
1			
•			

Table 1. Identification of Surface Soil Chemicals of Potential Concern Martin State Airport

2.0 H VAC F 12 H D.A. 1 11 . -۵. r 1 56% 1 0.55+75 T 75 T 310,000 JF ING 5 Phonetheanah 04 1 0.0005 076 ссвя 0.00006 0% No alpha-BHC Û 0 •• --ħ ۹۴

Table 2. Identification of Subsurface Soil Chemicals of Potential Concern Martin State Airport Middle River, Maryland

The survey of the

 4							87788184878487		
W MANDERINA		•	•	•	,	, 1	1 <i>1</i>		e "
Lead	102	2.5	43	42%	1 - 66,000	66,000	NA	Yes	4361
Mercury	102	0,04	54	42.% 54%	0.02 + 3	3	NA	Yes	0.39
Nickel	100	2.5	82	82%	4.2 - 42,000	42,000	20000	Yes	2308
	100	2.5	11	11%	2.8 - 701	701	5100	No	
Selenium	100	4.3	1	1170	2.6 - 701	101	5100	140	الــــــــــــــــــــــــــــــــــــ
VOCs		1	h	11		r			1 N
	00	0.05		8%	.025 - 2.55	2.55	920000	No	╂────₿
Acetone	88	0.05	7	0%		2.55	920000	No	
Acrolein	74	0.2	0					No	 ∦
Acetophenone	12	0.33-4.95	0	0%					┨─────┨
Acrylonitrile	74	0.18	0	0%				No	
[n]:- /1 -11	22	1 0.97	n	1 04/ 1		·	1 1	010	A N
<u></u>									
Bromomethane	86	0.005	0	0%	**			No	<u> </u> }

							.		 •
1,2-Dichloroethane	105	0.005	-3	3%	.008048	0.048	31	No	
1,2-dichlorobenzene	184	0.0025	12	7%	.00844	0.44	92000	No	
cis-1,2-dichloroethene	105	0.005	39	37%	.025 - 20	20	10000	No	
1-1,2-DCE	105	0.005	22	21%	0.002 - 0.25	0,25	20000	No	
1,1,1-trichloroethane	103	0.005	0	0%			290000	No	

12,3-trichloropropane 1 103 0.005 1 1 1% 0.014 0.014 1.4 No 1

Table 2. Identification of Subsurface Soil Chemicals of Potential Concern Martin State Airport Middle River, Maryland

Composed	Count	POL HIMPLED	Nember	Frequency of Detection	Rosys (mysky)	Maximum Reported	Industrial Region III REC	COPC es Tadl	.ua	
	100	9.902	4 4 1	1270	1 .UT3 - 41		1 97000 I			
			1			L			(<u> </u>]	<u> </u>
										
\										
	•.									
• <u>Hitter +</u>						·) 4 [
				40.01				,		
· · ·										
<u>}→}</u>										
-										
			<u> </u>		· · . . <u></u> .		ı		ہ ۔ار	
Benzo (k) Fhioranthene	56	0.33	5	9 %	0.15 - 7.4	7.4	39	No	2.2	
Benzo (g.h.i) Perylenea	56	0.33	6	11%	0.6 - 5.8	5.8	31000	No		
Chrysene	65	0,33	15	23%	0.165 - 31	31	390	No	3.8	
Dibenz(a,h) anthracene	<u>65</u>	0.33	3	5%	0.1 - 2.5	4.1	0.39	Yes	0.435	
Indeno(1,2,3-c,d)pyrene	65	0.33	9	14%	0.165 - 13	13	3.9	Yes		
Naphthalene	65	0.33	28	43%	0.029 - 230	230	20000	No	∦}	

њ. У ß F 1 Í 1 ł И.

NA - not available

_

-

- -

_ _ _ _ _ _ _ _ _ _ _ _ _

a - based on structural homology

b - no available toxicity value

		* <u>***</u> /_*****	<u></u>		· • · · ·		
la 						<u>n</u>	
11							
sula .		<u></u>	<u></u>			•	
							-
· · · · · · · · · · · · · · · · · · ·							1
ч							
T.	a c	GAT			e- 3 Xu		
<u></u>							
2							
							
s							
¥.							
	Bromodichloromethane Bromoform	120 0.4 - 5,000 120 0.405	0 0%		0.17	No No	
ł	Bromofona	n 320 cnnn		<u> t</u>		NT.	
·							
-8-							
	4-Chlorotomene	120 0,498 - 5000	U U7%e				
· · · · · · · · · · · · · · · · · · ·							
)							

12) 41 € 1

Table 3. Identification of Groundwater Chemicals of Potential Concern Martin State Airport Middle River, Maryland

د «	
_	
х Эн	
. <u>.</u>	1,2-Dichloroethane 120 0.275 29 24% 2-510 510 0 155 207
иби I <u></u>	
د	
• <u> </u>	Nitrobenzene 63 10 0 0% - 3,5 No
, <u>112</u> "6	
·	
to an income	
22 <i>2-4 24 22 22 22 22 22 22 22 22 22 22 22 22</i>	
	p/m-Xylene 102 3 23 23% 3 - 33,000 33,000 210 Yes

Table 3. Identification of Groundwater Chemicals of Potential Concern Martin State Airport

.

l .		
1¢		
£.		
I		
		~
-	Chrysene 61 10.0-50 0 0% 0.5-13 10 10	
	Dibenzo (a,b) anthracene 61 10.0-50 0 0% 0.87-4.1 4.1 0.009 No	
	2-Methylnaphtpalene 1 01 1 10 0 1 070 1 0.042 - 06 1 80 1 241 100 1	
i i i i i i i i i i i i i i i i i i i		
·	alpha-Chlordane 42 0.2 0 0% - 0.19 No	
i'	gan margan gan and an	
4	Dieldrin 42 0.2 0 0% 0.0042 No Toxaphene 42 5 0 0% 0.061 No	
i i i i i i i i i i i i i i i i i i i	NA- noc available	
	IAU- the available	

.

Table 4. Identification of Sediment and Surface Water Chemicals of Potential Concern Martin State Airport Middle River, Maryland

			·*· 1.1.1.1.1.1.1.1.1							
			•		11		1	*****		
	Alaman.									
	Banania	6	1 05		+	10.6	·	1.00	+	
	Arsenic Beryilium	6	0.5	2	33%	1.9 - 6	6	1.90 2000.00	Yes No	
	Chromium (Total)	6	2.7	6	100%	7.4 - 12000	12000	1500000	No	
	H								· · · · ·	
	u	·····	- <u>,</u>		*	******			·	
							_			
1										
	1 4		• • • • • • • • • • • •	· · • • · · · · · · · · · · · · · · · ·	·			<u></u>		
	Benzene	6	0.015	1	17%	0.044	0.044	52	No	
	··· ····		<u> </u>		·		·	· · · · ·	<u> </u>	
!										
	Man - council	1 /	I 4615	1 ^	I ann I	ለ ውስ እ ወታ	t no n i	100000	/ x: ¥	
		- •	1 1114					. 7		
	Trichloroethene		0.006	2	33%	0.32 - 69	69	1	No	
	· -									
	¥									
ļ	иренто(к)ноотяниете	{ 0	1 0.8	ı L	1 17% 1	1.5	- 1.5 J	39,00	t ING N	
, ,	Benzo(g,h,i)perylene	6	0.8	1	17%	1.5	<u> </u>	<u>39.00</u> 31000.00	NO No	
ļ	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	6	0.8	1	17%	<u>1.3</u> 1.4	1.3 1.4	31000.00 3.90	No No	
	Benzo(g,h,i)perylene	6 6 6	0.8	1	17%	1.3	1.3	31000.00	No	
,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	6	0.8	1	17%	<u>1.3</u> 1.4	1.3 1.4	31000.00 3.90	No No	
, ,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	6 6 6	0.8	1	17%	<u>1.3</u> 1.4	1.3 1.4	31000.00 3.90	No No	
,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	6 6 6	0.8	1	17%	<u>1.3</u> 1.4	1.3 1.4	31000.00 3.90	No No	
,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	6 6 6	0.8	1	17%	<u>1.3</u> 1.4	1.3 1.4	31000.00 3.90	No No	
, 	Benzo(g,b,i)perylene Indeno(1,2,3-cd)pyrene Chrysene	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene Chrysene	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
,	Benzo(g,b,i)perylene Indeno(1,2,3-cd)pyrene Chrysene	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
,	Benzo(g,b,i)perylene Indeno(1,2,3-cd)pyrene Chrysene	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
,	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene Chrysene PEAr PCBs/Pesticides	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene Chrysene PEAr PCBs/Pesticides	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	
	Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene Chrysene PEAr PCBs/Pesticides	6 6 6 • • • • •	0.8		17% 17% 17%	<u>1.3</u> <u>1.4</u> <u>1.7</u>	1.3 1.4 1.7	31000.00 3.90 390.00	No No No	

Table 4. Identification of Sediment and Surface Water Chemicals of Potential Concern Martin State Airport Middle River, Maryland

I

2 2 2

Freihussey

95

3.0 - 3.0 3.0 - 4.0 7.0 - 7.0 95

3

4

7

11000

61 0.026

2,6

No

No Yes Yes

NA - not available

c-1,2-Dichloroethene

Trichloroethene Methyl-t-butyl ether 8

8

8

8

50

ł

1

1

Zinc

VOCs

TABLE 5 Estimated Risks due to Potential Soil Exposures On-Site Worker Scenario

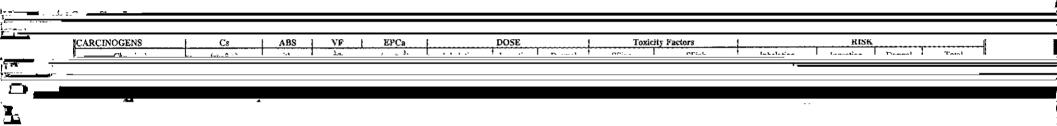

	PARAMETERS	······································					UNITS	VALUES				-
•	BW = Body Weight, adult						kg	70				
		~		₹ ⁴ \$hz-								
<u>-</u>	UF = Conversion Factor SFing = Ingestion Cancer SI	lope Factor					kg/nig kg-day/mg	see table				
	CARCINOGENS Chenvicai	Cs (mg/kg)	ABS VF unitless m ³ /kg	EPCa (mg/m ³)	Inhalation	DOSE Ingestion Dermal	SFing	y Factors SFinh	Inhalation	RISK Derr	nal Total	
	W outpations	4.0	[U.10]						1.00*10	[0.4D-07] J.05	-07	
- Y- W	jjCarbazoie	<u> </u>	,		5.00-11 E	3.42-07 2.92-07	, 2000-01 (R
	· · · ·	, , ,		014 1010/1010/1010/1010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01010/01	L			an a an		PICKARN INKAS -	812-118 10000000000000000000000000000000000	
	Provide the second second											

TABLE 6 Estimated Risks due to Potential Exposures to Sediments On-Site Worker Scenario

Martin State Airport

ĸg	<i>/</i> U	N
days	9125	
days	25550	
em/hour	see table	
mg/day	100	
m ³ /hour	1	
hrs/day	8	
anthan	4470	
	days days cm/hour mg/day m ³ /hour hrs/day	days 9125 days 25550 cm/hour see table mg/day 100 m ³ /hour 1 hrs/day 8

	TABLE 7 Estimated Risks due to Potential Soil Exposures Construction Worker Scenario Martin State Airport												
	BW = Body Weight, adult AThc = Averaging Time - noncarcinoge	;en			kg days ,	70 365							
- 1-	SFing = Ingestion Cancer Slope Factor SFinh \approx Inhalation Cancer Slope Factor	c			kg-day/mg kg-day/mg	see table							
	CARCINOGENS C	Cs <u>ABS</u>	VF EPCa	DOSE	Toxicity	/ Factors		.isk					
	[indeno(1,2,3-c,4)pyrene	/.8	5.742-09 (9.0	92-12 5.22-07 6.42-	-08 1	U	0.0ET00 3.8E-01	1 4.7E-U8 4.E-U1					
t pr		····· · · · · · · · · · · · · · · · ·											
- ·	- na - noi availadie												

TABLE 8. Estimated Risks due to Potential Sediment Exposures Construction Worker Scenario

Martin State Airport

BW = Body Weight, adult ATnc = Averaging Time - noncarcinogen ATc = Averaging Time - carcinogen Kp = Permeability Coefficient IngRad ^a = Ingestion Rate, adult InhRad = Adult Inhalation Rate(EPA, 1996a, p.5- ET = Exposure Time Port = Inspection Pactor	-20)		kg days days cm/hour mg/day m ³ /day hrs/day cm ² (day)	70 365 25550 see table 480 20 8 5570		
)K P ≠ Unbvetsion Factor			<u>Ky</u> /lug			ŀ¬
Charlone co		nose	l Tavicity F	setare -	DI¢A]
-						
				·		· · ·

TABLE 9 Estimated Risks due to Potential Sediment Exposures **Recreational Scenario**

Martin State Airport

PARAMETERS	UNITS	VALUES	
EPCs = Concentration in soil	mg/kg	see table	
EF = Exposure Frequency	days/year	70	
ED = Exposure Duration (EPA, 1996a)	years	25	
BW == Body Weight, adult	kg	70	
Je	a	0126	

<u>16 –</u> τ.

`										
								т		
,										
Normalization	<u> </u>									
					*					
•										
							-			
_	K 		·····	-r <u></u>		·····	 			u 🔳
ے حصف										
· <u>,</u>										
<u></u>										
ý 0										
· · ·										۵.
* ·	l e:		,						· · · · · · · · · · · · · · · · · · ·	
	l		<u> </u>	<u> </u>					• • <u></u>	I
		······		-	-					
-										
A										
1.										

TABLE 10 Risk Estimates due to Potential Surface Water Exposures Recreational Scenario Martin State Airport مرابط الم Bluer Marvierd

ні ні г	Dose of chemical Target hazard index	mg/kg-day unitless	See below See below	
	tippgura transmou	da, miraan	70	u
<u>و</u>				
- RTDa.	Qual reference dose	mo <i>ko-</i> dav	See helow	ł

TABLE 10 Risk Estimates due to Potential Surface Water Exposures Recreational Scenario Martin State Airport Middle River, Maryland

Dose	Dose of chemical	mg/kg-day	See below	
RI	Target hazard index	unitiess	See below	
Risk	Risk	unitless	See below	
Cw	Chemical concentration in groundwater	mg/L	See below	1
Ca	Chemical concentration in air	mg/m3	See below	
IRw	Groundwater ingestion rate	L/day	0.05	· · · · ·
nhR	Inhalation rate	m3/hour	1	1
T	Exposure Time	brs/day	8	ļ
EF	Exposure frequency	days/year	70	
ED	Exposure duration	years	25	
BW	Body weight	kg	70	
ĄР	Averaging period	days	See below	
F5 1	Cine another a sur-	2	5470	

RDo		Oral reference dose												See below			
CSFo				slope factor				(mg/kg-day)	-1	See below							
Noncarcinogens		9,125 days											Total				
Compound	Cw	VF	Ca	RfDo	RíDi	Кр	Doseing	Doseder	Doseinh	HIing	HI _{der}	HI _{leh}	н				
					1 2 22 22			1		0.000	· · · ·						

Table 11 Summary of Estimated Risks and Hazard Indices Martin State Airport

ú

ş

1 -

Exposure Scenario	Estimated Carcinogenic Risks	Estimated Hazard Index		
On-Site Worker				
Soil	3.E-05	0.02		
Sediment	3.E-06			

Recreational User		
Sediment	1.E-06	0.007
Surface Water	8.E-08	0.002

`	Table 12. Evaluation of Lead in Surface Soil
• • • • • • • • • • • • • • • • • • •	
து	
1 	
	اــــــــــــــــــــــــــــــــــــ
<u>.</u>	Soil adherence ug/cm² 70 200 Water Ingestion 0.84 66% 0.84 69% Dermal untake constant /ud/dl//ud/dt 0.0001 Food Ingestion, bkgrod 0.23 18% 0.23 19%
.	
÷	
<u> </u>	Bioavariability Unitiess 0.94 Breathing rate _m³/day _20 6.8 Pathway PEF un/dt percent
ł	

____

- ---- -- --

				2						
۰_		<u>، بر</u> م	14.5'	10 11 10 M I.		• •				
l_r										
1 · · · · ·	•	ţ	1	r					·····	
MEDIUM	LEVEL	ļ		Per	rcentile Estim	nate of L	Blood Pb	(ug/dl)	PRG-99	PRG-95
	<u> </u>		•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					>	••••
Resnirable Dust (un/	/m ³) 15	1	81000	Ph OCCUPATIONA 3.	.9 7.2	8.5	10.3	11.7	3465	5448
L. T. M. HOK. LANG. LANG.					•		*			
1										
جریف (میلی)	الدانية فالعماريون	·	<u> i</u>	Parta		<u></u>		l ozer ([i]	<u> </u>
ند میں ایک	ا _{ما} بينم ^{ور} منظري ورو	·	<u>1 i</u>	D adh		<u></u>	<u> </u>	l one i	[/_s/	<u> </u>
، جریف (میں ایک	ا _ حريم ا - عندواز تر و -	·	<u> </u>	Pa 4 la		<u></u>		l oer i	7.48	<u> </u>
- -	ا حميم المحمولي ورا	·	<u>p</u>	Dedlesses .		<u></u>	<u> </u>	022	(/_M	<u> </u>
-	ا حميد المحولة م	· •	<u>p</u>			<u></u>				<u>I</u>
Soil adherence	ی میں ان میڈرو پر ا ug/cm	7.	<u> </u>	Nuter Ingestion		U.84]	16%		U.84	
-	ی میں اور میں ا اور میں اور میں		1 200 1				16%		<u></u>	<u>.</u>
-	' ' ' ' '		200			<u></u>	16%		U.84	
-	ی میں اور میں ا اور میں اور میں		200			U.84]	16%		U.84	<u>.</u>
-					\$ \$			[1	
- Soil adherence	i thuncoo			Water Ingestion	}	ay vonu	IDURION	[·By Jam	
Soil adherence	m ³ /day	20	6.8	Water Ingestion	Guine PEF	ay continuity ug/dl	percent	[،گر ري ug/dl	percent
Soil adherence	m ³ /day (ug/dl)/(ug/da	20 0.08	6.8 0.19	Pathway Soil Contact	PEF 5.6E-5	ug/dl 0.24	percent 1%	PEF	-ຊື່, ປະກາດ ug/dl 0.24	percent 0%
Soil adherence	m ³ /day (ug/dl)/(ug/da	20	6.8	Water Ingestion	Guine PEF	ug/dl 0.24 30.70	percent	[،گر ري ug/dl	percent

TABLE14 Calculation of Surface Water Risk-Based Levels Martin State Airport Middle River, Maryland

w-fi	L3762F N97376 (N45V	1.751 Å \\ C 5	Vaa holasi	('glowlatori	17
	Exposure une	nours/aay	8	USEPA, 1990a	ŧi
BW	Body weight	kg	70	USEPA, 19962	
АР	Averaging period	days	See below	USEPA, 1989	
SSA	Skin surface area	cm ²	5670	USEPA, 1996a	
Kp	Permeability constant	cm/hr	See below	USEPA, 1992	1
CF1	Conversion factor, ug to mg	mg/ug	1.00E-03	Constant	
[11]F?	Conversion factor cm ³ to L	I /cm ³	1 DOF 01	Constant	n
CSFo	Oral cancer slope factor	(mg/kg-đay) ⁻¹	See below	USEPA, 1998, 1996	8
	· · · · · · · · · · · · · · · · · · ·	**********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
.	· · · · · · · · · · · · · · · · · · ·	·			

TABLE14 Calculation of Surface Water Risk-Resert Levels								
Jarget hazard index Risk Chaminal and the second second second	unitiess unitiess	See below See below	Calculated Calculated					
Exposure time Body weight Averaging period Skin surface area	nours/day kg days cm ²	8 70 See below 5670	USEPA, 1990a USEPA, 1996a USEPA, 1989 USEPA, 1996a					
······································								
Osolumnor elses fastes	(malea dan) -	Car halane	110EBA 1000-1007	it				
			19141 Hazard Busch 2,24	<u></u>				
	Larget hazard index Risk Charlest enne Body weight Averaging period Skin surface area	Larget hazard index unitless Risk unitless Chemical account in the form nours/day Body weight kg Averaging period days Skin surface area cm² Opplement class forme cm² chemical account in the forme	Larget hazard index unitiess See below Risk unitiess See below Chemical account in the former nours/day 8 Body weight kg 70 Averaging period days See below Skin surface area cm² 5670	Jarget nazard index unitiess See below Calculated Risk unitiess See below Calculated Chemical account of the formation of t	Calculation of Surface Water Rick-Resert Levels Jarget nazard index unitiess Sce below Calculated Risk unitiess See below Calculated Rody weight kg 70 USEPA, 1990a Body weight kg 70 USEPA, 1990a Skin surface area cm ² 5670 USEPA, 1996a			